
MicroCART 1

MicroCART
Final Design Document

Team Number: 43

Client: Dr. Phillip Jones

Advisers: Dr. Phillip Jones

Team Members/Roles

Brandon Cortez - Test Stand Lead

Reid Schneyer - Test Stand Sub-team

Colton Glick - Firmware Lead, Git Manager

Ellissa Peterson - Team Member

Ryan Hunt - System Architect

Carter Irlmeier - Web Manager, Lighthouse Sub-team

Zachary Eisele - Groundstation Lead, Co-System Architect

Team Email: sdmay22-43@iastate.edu

Team Website: https://sdmay22-43.sd.ece.iastate.edu

Revised: 4/28/2022

MicroCART 2

Table of contents

Team 7

Team Members 7

Required Skill Sets 7

Skill Sets covered by the Team 7

Introduction 7

Problem Statement 7

Requirements & Constraints 7

Engineering Standards 8

Intended Users and Uses 8

Project Plan 8

Project Management/Tracking Procedures 8

Task Decomposition 8

Project Proposed Milestones, Metrics, and Evaluation Criteria 9

Project Timeline/Schedule 10

Risks And Risk Management/Mitigation 10

Personnel Effort Requirement 11

Other Resource Requirements 11

Design 12

Design Context 12

Broader Context 12

User Needs 12

Prior Work/Solutions 12

Technical Complexity 13

Design Exploration 13

Design Decisions 13

Ideation 13

Decision-Making and Trade-Off 13

Proposed Design 14

Design Visual and Description 15

Functionality 17

Areas of Concern and Development 17

Technology Considerations 18

Design Analysis 18

Design Plan 19

Testing 19

Unit Testing 19

Integration Testing 20

MicroCART 3

System Testing 20

Regression Testing 20

Acceptance Testing 20

Results 20

Implementation 21

Crazyflie Firmware 21

Test Stand Firmware 21

Ground station 21

Professionalism 22

Project Specific Professional Responsibility Areas 22

Most Applicable Professional Responsibility Area 23

Closing Material 23

Conclusion 23

Design Evolution since 491 24

References 24

Appendices 24

Operation Manual 24

Alternate Versions 25

Other Considerations 26

Code 26

MicroCART 4

Executive Summary
Development Standards & Practices Used

● CI/CD pipeline in git

● 3D printing guidelines

○ IEEE P3030

○ https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7308141

● Bluetooth/Radio communication standards

○ https://standards.ieee.org/standard/802_15_1-2002.html

● Crazy Real Time Protocol (CRTP)

○ Packet protocol used by Crazyflie

○ https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/f

unctional-areas/crtp/

Summary of Requirements

● Test stand must record and transmit movement data to a host computer

● GUI must display all relevant data

● Drone firmware must be modular so that control logic can be removed and substituted

● Develop software to stabilize, and communicate with the mini-quadcopter.

● Develop testing rigs to allow the team and users (CPRE 488 students) to interact with

the mini-quadcopter. For example, for tuning control algorithms to stabilize the

mini-quadcopter

● Laboratory document instructions need to be clearly written to guide CPRE 488 students

while working with the mini-quadcopter

● Demonstration of the mini-quadcopter’s autonomous capabilities should be significant

and show the team’s technical abilities

Applicable Courses from Iowa State University Curriculum

● COM S 309, 319

● CPRE 288, 458, 488

● EE 333

New Skills/Knowledge acquired that was not taught in courses

● 3D Modeling Software

● Software Architecture of the Crazyflie Drone

● Operation of camera rig tracking system

● PID Controllers

● Socket Communication Protocols

● OpenVR API

● QT for GUI development

● Multi-Threaded, responsive graphical user interface

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7308141
https://standards.ieee.org/standard/802_15_1-2002.html
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/crtp/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/crtp/

MicroCART 5

List of figures/tables/symbols/definitions

● Figure 1: Crazyflie test stand and control board

● Figure 2: Crazyflie 2.0 mini quadcopter

● Figure 3: Ground station and CrazyCart GUI

● Figure 4: Module Interface Diagram

● Table 1: Project plan Gantt chart of milestones and deliverables.

● Table 2: Table of Personnel Effort Requirements by milestone

● Table 3: Table of Broader Design Context

● Table 4: Table of project-specific professional responsibilities

MicroCART 6

1. Team

1.1. Team Members

Brandon Cortez - Test Stand Lead

Reid Schneyer - Test Stand Sub-team

Colton Glick - Firmware Lead, Git Manager

Ellissa Peterson - Team Member

Ryan Hunt - System Architect

Carter Irlmeier - Web Manager, Lighthouse Sub-team

Zachary Eisele - Groundstation Lead, Co-System Architect

1.2. Required Skill Sets

● 3D Design & Printing

● GitLab code/issue management

● Software Architect

● Firmware Development

● GUI Frameworks

● PCB Design & Electronics Prototyping

1.3. Skill Sets covered by the Team

● 3D Design & Printing - Brandon, Reid

● GitLab code/issue management - Colton, Ellissa

● Software Architect - Colton, Zach

● Firmware Development - Ryan, Zach

● GUI Frameworks - Ellissa, Carter

● PCB Design & Electronics Prototyping - Reid, Brandon

2. Introduction

2.1. Problem Statement

CPRE 488 students need a functional drone system where they can write and test

their own control logic for in-class labs to learn more about advanced embedded

systems. We developed a platform to facilitate experimentation for these

students. Additionally, we created impressive quadcopter demonstrations to

show off to potential Iowa State students and industry contacts.

2.2. Requirements & Constraints

● Test stand must record and transmit rotational position data to a host computer

● GUI must display and graph drone position information

● Drone firmware must be modular so that control logic can be removed and

substituted by student’s code

● Must develop software to stabilize, and communicate with the mini-quadcopter.

MicroCART 7

● Must develop testing rigs to allow the team and users (CPRE 488 students) to

interact with the mini-quadcopter. For example, tuning control algorithms to

stabilize the mini-quadcopter

2.3. Engineering Standards

● Must be compatible with existing Crazyflie standards and systems

○ Low-level C on the quadcopter, and Python for client application

● CI/CD pipeline in git

● 3D printing guidelines

○ IEEE P3030

○ https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7308141

● Bluetooth/Radio communication standards

○ https://standards.ieee.org/standard/802_15_1-2002.html

● Crazy Real Time Protocol (CRTP)

○ Packet protocol used by Crazyflie

○ https://www.bitcraze.io/documentation/repository/crazyflie-firmware/m

aster/functional-areas/crtp/

2.4. Intended Users and Uses

● Students taking CPRE 488 in the Spring 2022 semester will benefit from our

project as the lab uses quadcopters as a teaching tool.

● Iowa State University is also a potential beneficiary, a demonstration of the

drones will attract potential students and corporate representatives

3. Project Plan

3.1. Project Management/Tracking Procedures

Our team used a waterfall+agile management style. The nature of our project was

such that we could immediately begin adding features to the Crazyflie, allowing

an agile approach to work well. We planned to track our progress in the project

through a GitLab kanban board. Tasks/issues would be created on the board as

we began development, which would then be assigned to different members of

the team. Additionally, milestones with due dates were created to make sure we

kept a good pace as the project progressed.

3.2. Task Decomposition

Tasks Completed:

1. Investigate Crazyflie firmware architecture

a. Learned how to modify and flash a new firmware to the Crazyflie

b. What is the current architecture structure?

c. Can the control code be easily modified?

d. How easy is the control code to understand for new users?

2. Modified Crazyflie firmware to be as modular as possible

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7308141
https://standards.ieee.org/standard/802_15_1-2002.html
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/crtp/
https://www.bitcraze.io/documentation/repository/crazyflie-firmware/master/functional-areas/crtp/

MicroCART 8

a. Abstract the control code to a standardized interface to allow other

control algorithms to be easily implemented through an adapter

architecture

b. Rewrite the existing control code to utilize the new interface

3. Write a basic PID control loop to maintain a stable hover, using the new

interface

4. Develop ground station software to communicate with and control

Crazyflie

a. Start with a command-line interface on Linux

b. Build a GUI/frontend once the backend is mostly working

5. Develop test stand hardware

a. Determine what electronics will be used to record & communicate

data

b. Integrate chosen electronics into test stand for data collection

c. Design and print test stand model to mount Crazyflie

6. Develop test stand software to measure and log rotation of the Crazyflie

while held in test stand

a. Should collect and record all desired data from the Crazyflie in

real-time

b. Should communicate with the ground station to allow for easy

saving of log data

7. Write lab instructions and documentation for interfacing and using the

modified Crazyflie

a. Basic quick start guide

b. Detailed proposed lab activities

8. Develop an demonstration that will be performed by the Crazyflie

a. Research possible routes to take for demonstration

b. Implement chosen route

3.3. Project Proposed Milestones, Metrics, and Evaluation Criteria

Project Milestones;

1. Working test stand prototype

a. 3D printed and assembled

b. Electronics selected and assembled

c. Firmware is written and reporting back

2. Custom firmware running on Crazyflie

a. First modified firmware running on Crazyflie

b. Control software abstracted with adapter interface

c. Existing control code running through adapter

3. Custom ground station CLI

a. Control commands can be sent to Crazyflie and an

acknowledgment is sent back

4. Ground station GUI based on CLI

a. Basic GUI that sends pre-configured commands through the CLI

MicroCART 9

b. More advanced GUI that displays flight data and allows for

gamepad controls

5. Crazyflie flight demonstration

a. Interacting with lighthouse system

b. Running basic autonomous control script

c. Complex autonomous drone demonstration

3.4. Project Timeline/Schedule

Table 1. Project plan Gantt chart of milestones and deliverables.

3.5. Risks And Risk Management/Mitigation

Risks:

1. Firmware is much harder to adapt to an adapter architecture, takes longer

than expected, 60%

a. Mitigation plan: Begin researching and modifying the Crazyflie

firmware as soon as possible. May need to push back tasks that are

dependent on this, the different control algorithms, and lab

instructions.

2. Can’t get voltage divider ratio to work for test stand electronics, 60%

a. Use a 5v logic level microcontroller to read test stand data

3. CLI cannot communicate with Crazyflie, 30%

4. GUI takes too long to create, 40%

MicroCART 10

3.6. Personnel Effort Requirement

Task Time

Estimat

e

(Hours)

Explanation

Investigate existing firmware 35 Depends on firmware complexity

Create control firmware 50 Depends on firmware complexity

Develop ground station software 200+ Create CLI & GUI for communicating

with Crazyflie

Develop test stand hardware 32 Design & build test stand

Develop test stand software 30 Write firmware for test stand

electronics

Write lab instructions 25 Create assignment for CPRE 488 lab

Create autonomous demonstration 40 Become familiar with system and

implement

Table 2. Table of Personnel Effort Requirements by milestone

3.7. Other Resource Requirements

● Access to several Crazyflie drones to test and develop on

● Development computers running Linux to build and test the system on

● SIC access for 3D printing components of the test stand

● RC controllers

● Test Stand Control board components (see Bill Of Materials in appendix)

MicroCART 11

4. Design

4.1. Design Context

4.1.1. Broader Context

Our project has a fairly narrow context, all things considered. We’re

designing for Iowa State University students interested in learning more

about complex embedded systems, specifically those taking CPRE 488 in

the spring 2022 semester. The project addresses the societal need of

needing skilled embedded programmers as more and more devices are

created and manufactured.

Area Example

Public health, safety, and

welfare

The drone could cause minor injury if it

collides with an individual

Global, cultural, and

social

The drone will be used to teach engineering

students more about advanced embedded

systems and possibly inspire others to take

interest in computer engineering

Environmental The batteries the drones use are not great

for the environment and can catch fire

Economic An impressive drone demo could attract

potential corporate or private donors, and

potential future students

Table 3. Table of Broader Design Context

4.1.2. User Needs

CPRE 488 needs a functional drone system where they can write their

own control logic for in-class labs to learn more about advanced

embedded systems as well as a way to test and tune this control algorithm

for table flight of the drone.

4.1.3. Prior Work/Solutions

We followed previous work that had been done for years, most recently by

the 2020 MicroCART team. This is advantageous in that we have code

and repositories

(https://git.ece.iastate.edu/danc/MicroCART/-/tree/2020-team-final-sta

te) to look at, but we definitely are operating a different project. We dealt

with a much smaller version and different kind of drone than what has

been used previously, which definitely differentiated our work from

others.

https://git.ece.iastate.edu/danc/MicroCART/-/tree/2020-team-final-state
https://git.ece.iastate.edu/danc/MicroCART/-/tree/2020-team-final-state

MicroCART 12

4.1.4. Technical Complexity

The design consists of multiple components/subsystems that each utilize

distinct scientific, mathematical, or engineering principles. These

components/subsystems are:

● Groundstation

○ includes computer software skills

● Firmware flashed to the Crazyflie

○ includes computer engineering skills

○ Will utilize several popular software engineering principles

such as Separation of Concerns, Modularity, Abstraction,

and Incremental Development

● Test Stand

○ involves 3D modeling,

○ electrical engineering

○ embedded systems

4.2. Design Exploration

4.2.1. Design Decisions

● Wifi integration decision

● What exactly to do for the demonstration

● GUI layout

● What sensors will be embedded in the test stand

4.2.2. Ideation

We identified potential options for sensors needed through client and

group requirement discussions and brainstorming:

● Sensors

○ Rotation

○ Vibration

○ Voltage

○ Gyroscope

○ IR

4.2.3. Decision-Making and Trade-Off

Our process for creating these pros and cons was through discussion with

the client and group members to make sure we covered all areas of

concern.

● Affordability (keeping in mind project budget),

● Availability (what is in stock and what the lab already has),

● What fits our design

● What works with our firmware

MicroCART 13

4.3. Proposed Design

● We have a working test stand that lets students measure roll, pitch, yaw

and the rates for each and sends that information to the ground station

● We have a ground station that allows us to communicate with the drone to

receive information from its sensors and send setpoints or parameters.

● We have a GUI for the ground station which allows students to graph the

data from the sensors or from their own firmware.

● We have created our own PID controller for the Crazyflie and made a

stripped down version for the students to write their own control

algorithms

● We have written the lab for the students where we introduce them to our

system then they tune their own PID values and write the firmware which

includes the PID equations

● We have an autonomous demonstration working as well as a way to

control the drone using a VIVE controller

MicroCART 14

4.3.1. Design Visual and Description

Test Stand Model:

Figure 1. Crazyflie test stand and control board

The test stand assembly consists of 3 major components. Circled in red, the

control board provides +5V and ground to the MA3 absolute rotary encoder

mounted on the underside of the test stand. It reads the analog voltage value

provided by the encoder, then translates that value into a rotational position,

which is sent over USB serial to the ground station computer. The 6mm

pushbutton on the control board serves a dual role. When held, it toggles the

control board from reporting the rotational position to reporting the rotational

rate, or vice versa. When in position mode, a short press of the button “zeros” the

reading output, similar to the tare function on a digital scale.

MicroCART 15

The blue rounded rectangle shows the test stand quadcopter mount. This

component has four holes that the plastic quadcopter legs fit into, and it holds the

drone to the rotary encoder, preventing unintended liftoff. This component is

fitted to the shaft of the MA3 absolute rotary encoder, and rotates the encoder

shaft as the drone rotates.

The third major component of the test stand assembly is the test stand, indicated

by the green arrow. The test stand houses the body of the MA3 absolute rotary

encoder and allows the quadcopter to produce thrust and execute rotational

maneuvers to test for yaw rate and position. The test stand is also designed to

allow it to be rotated 90° and set on its side to allow the quadcopter to be tested

on a different axis for pitch and roll values using a side-mounted quadcopter

mount.

Figure 2. Crazyflie 2.0 mini quadcopter

The Crazyflie is a COTS open source development platform quadcopter. This is

what the students tested their control algorithms on. We modified the firmware

of the Crazyflie so that the PID controller was broken into modular parts and

then stripped down for the students to fill out. We also created our own PID

controllers from the modularized code to prove that it could be done.

MicroCART 16

Figure 3. Groundstation and CrazyCart GUI

The groundstation backend was initially created by a MicroCart team a

few years ago as a way to communicate with the larger drones they had via

CLI commands, an adapter was made by a more recent team which

utilizes the ground station but communicates with the Crazyflie. We made

additions and updated outdated code to support the functionality that we

wanted. We then created a GUI, that works with the backend, that would

allow for easier means of communication with the drone and display the

data that was being communicated.

4.3.2. Functionality

Our design lets students create and test their own control logic for the

drone and gather data from the test stand as well as to show off when

prospective students visit.

Our design fits the functional and non-functional requirements. Of course

there could be improvements such as a few more features that would

make students' lives easier when writing control algorithms and a few

bugs that are documented. As this is a continuous project there will be

ever changing and adding of requirements to make the best lab possible.

As for this year's lab all of the requirements were met.

4.3.3. Areas of Concern and Development

Since we have completed our project and almost all of the students were

able to complete the lab we met the needs and requirements there. Since

MicroCART 17

this is an ongoing project and there will be a team improving upon what

we have created this year, the needs have shifted into needing

documentation to integrate future teams into what we have done easily.

Our immediate plans are to document every part of our project in gitlab

by giving instructions of how they were developed, how to continue

development, and how to use what we have created. There are also a few

students who have indicated that they want to work on the project next

semester so we are in the process of showing them what we have made

and giving them hands-on experience beforehand.

4.4. Technology Considerations

In working on our senior design project, we had to determine which type of

protocol we would use to communicate between the ground station and the

Crazyflie drone. The ground station that Bitcraze provides uses a radio antenna,

but Professor Jones wanted us to look into using either Bluetooth or WiFi to

communicate in our ground station software. While the Crazyflie does have an

existing Bluetooth IC, we would have to use a separate board for WiFi

communication, such as the ESP8266. Professor Jones’ concern was that

Bluetooth might have more latency than going with the Wifi option, since we

could use socket communication over Wifi. We ended up sticking with radio

communication as that was already implemented on the ground station and

Crazyflie drone side.

4.5. Design Analysis

Yes, our proposed design worked as the students were able to complete the lab

with all of the functionality that was necessary. We did get a lot of feedback from

the students with what features could be added/improved upon. We have a list of

these which we discussed with ourselves and with our client on which were the

most important then implemented from there.

MicroCART 18

4.6. Design Plan

Figure 4. Module Interface Diagram

Our design plan is divided into three teams, the ground station, the test stand,

and the firmware. I will first go over the individual requirements for each team then the

requirements of all of the teams together. The plan for the ground station is to start with

the previous year's MicroCART ground station as there was an adapter made for the

Crazyflie last year, then improve upon it with any information that would be beneficial

for students to use in the 488 lab. For the test stand the design plan is to first create a

test stand similar to one created from a previous team then see what could be improved

upon with it, make a new design with the previous flaws in mind. This will be continued

till the design fits all of the needs. The next step would be adding sensors onto the stand

so that students can get measurements from the Crazyflie quadcopter and create

hardware that will display the sensor data. The design plan for firmware is to become

familiar with the current firmware and figure out how the PID controls work, then

implement our own PID controller so that it could then be stripped down into a template

for 488 students. The plan for making these parts work together will be first setting up

communication between the Crazyflie and ground station with data being sent and read

both ways. The second part of communication would be the groundstation getting data

from the test stand sensors and displaying that data. To begin, this data link will be

through the Crazyflie radio. In future iterations we plan to switch to bluetooth or wifi or

radio communication to standardize the system more.

5. Testing

5.1. Unit Testing

Quadcopter software:

● Any units inside of the quadcopter coding can be tested, this would

include a variety of functions. An example would be a flying algorithm.

This can be tested by making a testbench for the function and feeding it

numbers that we would know the outcome for, then comparing to

MicroCART 19

expected output. This will eventually also be able to be tested on our own

testing station where we can verify the actual response of the quadcopter

from these equations. We also used the built in unit tests of the Crazyflie

which test basic logging parameters verification as well as compilation

error checking..

Test Stand:

● The unit testing for this part of the project would pertain to making sure

we are getting correct data from the sensor. This can be done by

measuring the values vs expected values of what the sensor is measuring.

GUI ground station:

● The unit testing for the GUI will be for it to display the proper

information, this may include some calculations which would also be a

part of the unit test. These would be tested by writing a testbench and

making sure the values match the expected

5.2. Integration Testing

The integration in our design was between the GUI ground control and the test

stand and between the quadcopter and the GUI ground control. We tested the

interfacing with the GUI ground control and test stand by sending data from the

test stand to the GUI and making sure it gets what was actually sent. We tested

the communication between the quadcopter and the GUI by sending a command

with the GUI and checking if the quadcopter responds accordingly.

5.3. System Testing

The system we are testing in our design is from the base station to the GUI then

to the quadcopter. This was tested by first sending a command from the GUI to

the quadcopter where then the test stand sensors recorded data from the

movements of the quadcopter then sent that data to the GUI.

5.4. Regression Testing

When creating new additions we used version control in conjunction with testing

to ensure that all bugs and issues are resolved before the master branch is

updated.

5.5. Acceptance Testing

We demonstrated that our design met the requirements to our client by giving

in-person demonstrations of our project progression. We involved our client, as

well as the TAs, in this by guiding them through how our solution works first by

individually showing them each part then how they all work together.

5.6. Results

The results of our testing showed that each part of the design works as stated in

the requirements. The ultimate test of the students completing the lab was a

success as almost every group was able to complete the lab. We also received

MicroCART 20

feedback of what students thought about the lab, which was relatively successful,

this proves the usefulness of our project.

6. Implementation

6.1. Crazyflie Firmware

The Crazyflie provided an excellent existing base to work from. The code is

published as an open source project by Bitcraze and is available on Github (see

references at the end of the report). The firmware is written in low level C and

allows for direct control over the Crazyflie’s microcontroller. However, the

firmware is also written in a modular manner that allowed our team to modify

the control algorithms for the CPRE 488 students. Further work was done by our

team to simplify the structure around the stabilization module to allow students

to focus on the PID control algorithms. We simplified the stabilization by

renaming variables and removing logic where it was no longer necessary.

Additional work was done to implement firmware flashing over USB by

automatically placing the quad into DFU mode when a special USB packet was

sent to it. This feature was not fully utilized in the CPRE 488 lab but was

contributed to the official Crazyflie open source project.

6.2. Test Stand Firmware

The test stand firmware is fairly simple, and is written using the Arduino IDE. It

reads an analog value from the pin connected to the MA3 absolute rotary

encoder, then scales the 0-1023 analog value to a -180 to 180 value

corresponding to the degree position of the encoder. When the button on the PCB

is pressed, it “zeros” the reading. When the button is long pressed, the firmware

switches into rotation rate mode, which gets a moving average of the rate of the

encoder rotation. Regardless of mode, the firmware then sends a single double

precision value over serial every 100 milliseconds.

6.3. Ground station

The ground station consists of three parts: the MicroCART ground station,

Crazyflie adapter, and the Crazyflie ground station. The MicroCART ground

station was made by student’s from previous years and was originally meant to

communicate with custom quadcopter’s they had made. This ground station

needed to continue to be used so that in the future it could support multiple

different types of quadcopters at the same time. In this project the main utility of

the MicroCART ground station was command processing. The MicroCART

ground station then sent commands to the adapter. The adapter was in charge of

translating packets from the MicroCART configuration to the Crazyflie

configuration. The Crazyflie ground station was the part of the system that

communicated with the quadcopter itself. It would receive command packets

from the adapter and send them to the Crazyflie, and receive logging and

parameter information from the Crazyflie and store it for later use.

MicroCART 21

7. Professionalism

7.1. Project Specific Professional Responsibility Areas

Professional

Responsibility

Project Application

Work Competence Why/why not? -

Our project will be used by future students thus it needs

to be of high enough quality that it can be

comprehended in the future to aid in education.

Performance(Medium):

We are continuously working to better our code but our

documentation could be improved to help with

future comprehension.

Financial

Responsibility

Why/why not? -

We are not buying or selling any products of significant

value.

Performance(N/A):

Communication

Honesty

Why/why not? -

We’ve had to communicate our progress to our contact

on a weekly basis.

Performance(High):

We write up weekly status reports, as well as

communicate frequently in discord and through

email with our contact.

Health, Safety,

Well-Being

Why/why not? -

We do have potentially harmful equipment being used in

our workroom.

Performance(High):

Safety protocols are in place and used during

development and testing.

Property Ownership Why/why not? -

We use university-provided resources and technology in

our development laboratory.

Performance(High):

We have been respectful of the lab & equipment,

especially the sensitive drone electrical components.

Sustainability Why/why not? -

MicroCART 22

Sustainability is not a large part of our project as we use

primarily small amounts of standard-grade plastic

components.

Performance(N/A):

The scope of our project uses limited supplies and

creates minimal waste.

Social Responsibility Why/why not? -

Our project does not have a high social responsibility

because it is going to be used primarily only by future

students.

Performance(High):

Although we do not have a high social responsibility, we

are developing our project with the safety and

education of the user in mind.

Table 4. Table of project-specific professional responsibilities

7.2. Most Applicable Professional Responsibility Area

Professional Responsibility:

Communication Honesty

Description, Demonstration, and Impacts:

For our project communication honesty consists of reporting our work to our

client truthfully, transparently, and without deception. We demonstrated this

responsibility by providing detailed reports to our client on a weekly basis that

communicated our team’s progress, what we achieved, what we are spending our

time and resources on, and what our plans for the future are. Communicating

clearly and honestly in this manner has allowed us to receive critical feedback

from our client on our performance in order to improve our team’s performance

as the project progressed.

8. Closing Material

8.1. Conclusion

Our solution successfully fulfilled our client’s product requirements. Our system

allowed CPRE 488 students to write and test the controls of the Crazyflie drone

from a ground station, while sensors in the test stand monitor the movement and

behavior of the drone.

Some aspects of the project that we would have done differently include,

● Having a more in depth discussion with client about project requirements

early on

● Allocating less time to research and more time to development

● Starting development on the ground station GUI earlier

MicroCART 23

● Using a web based GUI to improve performance and usability

8.2. Design Evolution since 491

At the end of last semester we had the following completed:

● Prototype of the test stand

● Prototyped control board on a breadboard

● Able to send rate setpoints via CLI from ground station

● Created a copy of existing controller as student controller in drone

firmware

At the end of this semester we have completed:

● Test stand that allows for measurement of attitude and attitude rate

● Control board PCB that translate analog value to rotational position and

rate

● Ability to get/set parameters, receive log data, send angle, rate and

position setpoints from the ground station via CLI

● GUI that connects to the ground station and can perform the CLI

commands as well as graph the logging data

● Created out own version of the firmware that was later stripped down and

used as a template for students to write their own control logic

● Created multiple demonstrations with the drones ranging from

autonomous flight to flight controlled by vive controller

8.3. References

US Digital, “MA3 Miniature Absolute Magnetic Shaft Encoder”, MA3 datasheet,

Jun. 2021 [Accessed 06-Dec-2021].

“Bitcraze,” GitHub. [Online]. Available: https://github.com/bitcraze. [Accessed:

06-Dec-2021].

“Distributed Autonomous Networked Control Lab / microcart,” GitLab. [Online].

Available: https://git.ece.iastate.edu/danc/MicroCART. [Accessed: 06-Dec-2021].

“Start here,” Bitcraze. [Online]. Available: https://www.bitcraze.io/documentation/start/.

[Accessed: 06-Dec-2021].

“CRTP - Communication with the Crazyflie,” Bitcraze. [Online]. Available:

https://www.bitcraze.io/documentation/repository/crazyflie-firmware/2021.06/function

al-areas/crtp/. [Accessed: 06-Dec-2021].

9. Appendices

9.1.1. Operation Manual

You can find documentation for our project in our gitlab wiki here:

MicroCART 24

https://git.ece.iastate.edu/danc/MicroCART/-/wikis/home

We have also included the instructional lab document located at the end of this

report.

9.1.2. Alternate Versions

- WiFi communication: During planning, our client initially wanted the

Crazyflie to communicate over WiFi using TCP or UDP sockets. This

would have standardized the communication protocol and allow the

Crazyflie quadcopters to be operated without the need of the Crazyradio.

This would require an additional board to allow for WiFi communication

and was theoretically possible. However, we underestimated the amount

of work that would be required in implementing WiFi communication and

did not have enough time to include it. It was dropped in favor of more

critical features for the CprE 488 lab.

- Bluetooth communication: Similarly to WiFi communication, our

client wanted to use bluetooth communication to control the Crazyflie

quadcopter. The Crazyflie already has the capability to communicate over

bluetooth with a smartphone, However, again we underestimated the

complexity of the system. The communication within the Crazyflie

firmware was far more complex than initially anticipated. Thus we had to

drop this in favor of more critical features for the CprE 488 lab. Our final

design utilized the already tried and tested Crazyradio for communication.

- OptiTrack System: Coover 3050 contains a 12 camera, ceiling mounted

OptiTrack system. This is an optical motion capture system that uses IR

markers to detect objects within its range. The system in 3050 is

outdated, as is the software that they use. “Tracking Tools”, from 2013, is

what is available, while “Motive” is the currently supported application for

tracking. This application is upwards of $1000 just for the license, while

the alternative Lighthouse Positioning System by Bitcraze is around $500

for a full setup. Because Bitcraze makes the Crazyflies as well, the

lighthouse system is extremely well integrated and documented. This

newer system is also portable, meaning it can be moved and

demonstrated almost anywhere, unlike our OptiTrack system.

https://git.ece.iastate.edu/danc/MicroCART/-/wikis/home

MicroCART 25

9.1.3. Other Considerations

Test Stand Control Board Bill of Materials

Item

Quantity per

board Total Quantity

Arduino Nano 1 12

100 ohm resistor 1 12

6mm push-button 1 12

5 pin 2.54mm 90 deg header pin 1 12

15 socket 2.54mm header pin socket 2 24

Test Stand Control Board PCB 1 12

Miniature absolute magnetic shaft encoder 1 12

9.1.4. Code

The code for our project can be found on our Gitlab repository from the link

below:

https://git.ece.iastate.edu/danc/MicroCART/-/tags A new tag will be created for

the final state of our repository called 2022-team-final-state, if this tag

does not exist yet, the current state of the master branch is our project code.

The code consists of the three main sections, the Crazyflie firmware, the ground

station software, and the test stand software. They are located in

/crazyflie_software/crazyflie-firmware-2021.06, /groundStation/, and

/test_stand_firmware respectively.

https://git.ece.iastate.edu/danc/MicroCART/-/tags

CPRE 488

MP-4
UAV Control

Document Version 1.1

Table of Contents
Introduction

Basic Crazyflie operation
Crazyflie LED Codes

Crazyflie System Overview
Virtual Machine Details

Importing the Virtual Machine Instance
Folder Sharing with the Virtual Machine
Exporting Code From the Virtual Machine
Importing Work Into the Virtual Machine
Final export from the virtual machine

Test Stand Details
Test Stand Components
Basic Setup
Using the Test Stand

Ground Station, Graphical User Interface (GUI)
Connect to the backend
Get/Set Parameters
Sending setpoints
Graphing Log Variables
Adding New Logging Variables
Gamepad Control
Command Line Interface (CLI)

Part 1: PID Tuning
Getting Set Up for Part 1

Basic Setup
Flashing the Crazyflie

Attitude Rate Control
1.1 Yaw Rate
1.2 Pitch Rate
1.3 Roll Rate

Attitude Position Control
1.4 Yaw
1.5 Pitch
1.6 Roll

1.7 The Maiden Voyage

Part 2: Writing the Control Algorithm
Control Layout
Understanding the Code

Logging Instructions
Data Structures
Compiling The Crazyflie Firmware

Writing the Code
2.1 General PID
2.2 Attitude Rate Controller
2.3 Attitude Controller
2.4 Student Controller, Bringing it all together
Final Check

What to submit
Extra Credit

Document Version Changelog

Introduction
A MAN HAS FALLEN INTO THE RIVER IN LEGO CITY!
Start the new rescue quadcopter!
HEY!
Program and tune the quadcopter, and off to the rescue!
Prepare the lifeline, lower the stretcher, and make the rescue!
The Crazyflie collection from MicroCART!

Say hello to your Crazyflie drone! The goal at the end of this lab is to be able to smoothly control
the Crazyflie with the algorithms that you will write and test. First, we will give you a brief
overview of the Crazyflie system, as well as how to get set up with development for this lab.

Basic Crazyflie operation

Figure 1. Crazyflie top down diagram
There is only one physical button on the Crazyflie, the power button. To start the Crazyflie:

1. Plug in a charged battery
2. Press the power button located near the front right arm of the drone

3. Wait for all four props to do a short spin and the startup tone to play.
4. Place the Crazyflie on a flat surface to allow its sensors to calibrate. This is indicated

by the flashing red LED. If it flashes quickly, then the sensors have been calibrated
properly and the drone is ready to fly. If the LED flashes slowly, then the sensors have
not been calibrated yet. If some hardware is damaged on the Crazyflie it may fail to pass
its self check on startup. This is indicated by the red led flashing quickly 5 times. In this
case the hardware may be inoperable. If this is the case, notify a TA or the instructor.

Crazyflie LED Codes
One of the main ways the Crazyflie communicates its status is with the four LEDs mounted to
the surface.

LED code Meaning

2 solid BLUE All normal, indicates the back of the Crazyflie

2 Slow flashing BLUE (1 hz) Crazyflie is in bootloader mode and is ready to
be flashed by radio

1 Fast flashing BLUE (2 hz) Crazyflie is in DFU mode and is ready to be
flashed by USB

Back left BLUE flashing Charging while plugged into USB. Percentage
of time LED is on indicates battery level.

1 slow flashing RED (0.5 hz) Crazyflie is on but sensors are not calibrated.
Place on a flat surface and keep still to
calibrate

1 fast flashing RED (2 hz) Sensors are calibrated and ready to fly

5 short RED pulses followed by a gap Self test failed, hardware may be damaged,
notify a TA or the instructor

1 solid RED Low battery

5 short GREEN pulses Self test passed, all normal

Crazyflie System Overview
This is the complete Crazyflie control system. You will only be modifying a small portion of it, but
it will be helpful to understand the full scope of the system you are interfacing with.

The control process starts with the state estimator module receiving sensor data and using it to
calculate the drone's current attitude (its rotation, i.e. roll, pitch, and yaw). The state estimator
then sends the calculated attitude to the state controller module, which also receives a setpoint
from the commander module (in our case, this is user input specifying the desired attitude or

attitude rate and thrust). The state controller module contains a cascading PID controller that
uses the inputs from the state estimator to calculate the actuation force needed. That is then
sent to the power distribution module where the actuation force is converted to motor power
then the loop starts over again.

You will be implementing the State Controller’s cascading PID in part 2 of this lab.

Figure 2. Crazyflie control diagram

The Crazyflie runs off of a cascaded PID system where the output of the first PID controller is
then used as an input for a second PID controller. This layout can be seen in figure 3, the output
from the attitude PID controller, the desired attitude rate, becomes the input of the attitude rate
PID controller. In part 2, you will be implementing the attitude and attitude rate PID controllers
for roll, pitch, and yaw.

Figure 3. Cascading PID diagram

Virtual Machine Details
The virtual machine has been configured to have the necessary utilities to develop the Crazyflie
firmware. Below are detailed instructions for completing different tasks within the virtual
machine. Login username is bitcraze and password is crazyflie

Importing the Virtual Machine Instance
New users will not be able to see the VM instance until it is imported.

1. Open Virtual box application
2. Go to machine → add
3. Navigate to the VM installation, C:\cpre488\mp-4\
4. Open the .vbox file
5. The virtual machine should now be available

Folder Sharing with the Virtual Machine
1. Go to VM settings, machine → settings then shared folders
2. On the far right click the blue folder with a green cross to add a new shared folder
3. Set the folder path to a folder on the windows system to share with the VM
4. Select Auto-mount
5. For the mount point enter ‘/home/bitcraze/shared-folder’ or some other specified mount

point
6. Select make permanent

a. This option is only available while the vm is running
7. Select ok on both dialog boxes to complete the shared folder setup
8. You should now be able to navigate to /home/bitcraze/shared-folder in the VM and see

the files in your shared folder

Exporting Code From the Virtual Machine
Due to the read only VM image, you must export your work from the VM before shutting
down. The VM will be reset on reboot and all changes will be reverted.

There are two options to maintain and export your changes from the virtual machine. The first is
to use a local git repository stored on your x drive or a usb flash drive. This minimizes network
usage. The second option is to use a standard GitHub or GitLab repository. This option is best
for working with other people in your group at the same time. If you do use the second option
we ask you make your repo private.

With a bare git repository on the host machine
1. Create a bare repository on your x drive or a removable media device

a. ‘git init --bare my_repo_name.git’
b. This will create a folder called my_repo_name.git with no working tree.

2. Share this folder with the VM and mount it at ‘/home/bitcraze/transfer-repo.git‘,
see details on sharing a folder with the VM

3. Once the bare repository is accessible from within the VM, the Microcart
repository should already be setup to use
‘/home/bitcraze/transfer-repo.git’ as a remote, check this with ‘git
remote -v’

4. Commit and push your changes to your shared folder
a. If this fails try setting the remote url again with ‘git remote set-url

origin <absolute path to shared folder>’

5. Your changes will now be on the bare repo in your shared folder, these changes
can now be reapplied later

a. This can be verified by navigating to
‘/home/bitcraze/transfer-repo.git’ and running git log
Lab_Part_2

With normal GitHub/GitLab repository
1. Note: the first commit may take a while as all the git history must be uploaded
2. Create a new private blank repo on github or gitlab, obtain the url or ssh address

to the repo
3. In the Lab_Part_* folder run ‘git remote set-url origin <address of remote repo>’

a. Note this set-url command must be run each time the VM is rebooted due
to the immutable hard drive setup

4. Commit and push your changes as normal

Importing Work Into the Virtual Machine
With a bare git repository on the host machine

1. Ensure the bare repository is accessible within the VM, see details on sharing a
folder with the VM, mount it at ‘/home/bitcraze/transfer-repo.git’

2. The Microcart repo should already be setup to use
‘/home/bitcraze/transfer-repo.git’ as a remote

3. From within the Lab_Part_* folder run ‘git pull’
With normal GitHub/GitLab repository

1. Set the remote repository with ‘git remote set-url origin <address of remote repo>’
2. From within the Lab_Part_* folder run ‘git pull’

Final export from the virtual machine
Final export will copy all files that have been modified since the original state of the Microcart
repo.

1. Ensure folder sharing and your git repository are setup correctly
2. Commit all changes within the git repository to be exported
3. From the root of the Lab_Part_2 folder, Run ‘cp -pv --parents $(git diff

Lab_Part_2_tag --name-only) <DESTINATION-DIRECTORY>’
a. The destination should be a shared folder other than your transfer repo so the

files are accessible from the host machine
b. This will copy all modified files since the Lab_Part_2_tag into the destination

directory

Test Stand Details

Test Stand Components
The test stand for MP-4 is a bit more complex than the ones used in MP-1, and consists of three
major components, plus a couple wires to connect them. The test stand base holds the rotary

encoder used to measure position, and can be used in two different configurations depending
on the drone orientation needed.

The test stand mount attaches to the encoder shaft, and holds the Crazyflie drone in place
through friction. There are two different mounts, which can hold the drone in either a horizontal
or vertical position.

Finally, the test stand control board reads the rotary encoder value, and transmits either
positional or rotation rate data to the computer.

Basic Setup
1. Start the Crazyflie drone on a flat surface before you attach it to the desired mount
2. Attach the drone to the mount by inserting each pair of clear plastic legs to a

corresponding slot in the mount. If you’re using the vertical drone mount, make sure that
the drone is mounted appropriately to measure either pitch or roll

3. Once the drone is mounted, insert the shaft of the mount into the hole on the top of the
test stand base, making sure it fits snugly and doesn’t rub against the sides.

4. Plug the small three pin end of the gray cable into the rotary encoder. While you are able
to only insert the plug in the correct orientation, please do not force the plug if you are
met with resistance. Both the cable and the rotary encoder are fairly expensive, and we
only have so many replacements

5. Plug the other end of the gray cable into the 5 pin connector on the test stand control
board. Make sure to pay attention to the orientation of the connector, since this end of
the cable can be plugged in backwards, although doing so shouldn’t harm anything.
Make sure that the black wire on the cable connects to the connector pin with the square
solder pad.

6. Finally, connect the Arduino Nano to your PC using a mini USB cable.

Using the Test Stand
The test stand has two modes, where it reports either positional data or the rotation rate (in
deg/sec). The LED labeled “L” on the Arduino Nano is used as a mode indicator, and is on
when the control board is in position mode, and off when in rate mode. You can switch
between modes by pressing and holding the black pushbutton mounted to the control
board PCB. Additionally, the black pushbutton is used in positional mode to zero the reported
reading (sort of like “tare” on a digital scale). Short pressing the button while in positional
mode will reset the reading to treat the drone’s current position as zero. While you will be
able to see the reported data in the GUI, you can read the data reported by the controller by
connecting to its COM port with PuTTY (or similar) at a baud rate of 9600.

Ground Station, Graphical User Interface (GUI)
The ground station software is what you will mainly be using to communicate with the Crazyflie.
It has been pre installed and set up on the virtual machine for this lab.

To connect to a Crazyflie and open the GUI, make sure the Crazyflie is powered on and the
crazyradio is available in the vm, then run the command crazycart <radio channel of
Crazyflie>. If everything connects successfully, the GUI will open. Below are some details on
how to perform tasks in the GUI.

Connect to the backend
Connects the GUI to the backend, you will need to do this every time you start the GUI

1. Navigate to the backend tab
2. Make sure the text box says ./BackEnd
3. Click connect

Get/Set Parameters
Lets you view and set parameters of the Crazyflie

1. After connecting to the backend, navigate to the param tab
2. The top half lets you view the parameter values of the Crazyflie while the bottom half lets

you set those same parameters
3. You first have to select the group that the parameter is part of then you can select a

specific parameter in that group

Sending setpoints
Sends setpoints to the drone

1. Navigate to the control tab
2. Make sure manual setpoint is selected
3. You can enter desired pitch/roll/yaw and slide the thrust in the boxes below
4. You then chose if you want to send a rate or angle setpoint then click apply to send it
5. Clicking stop will send a stop setpoint (all inputs 0) to the drone

Graphing Log Variables
1. See Adding New Logging Variables if needed
2. With the crazyflie connected, navigate to the Control tab
3. In the side bar you can specify up to 5 variables from active logging blocks to plot on the

right

4. Once variables are selected click start logging to capturing data
5. Press the stop logging button when you are done capturing data.
6. The data will be displayed in close to real time. After plotting has stopped you can zoom

in and move around the graph.
a. If nothing is plotted after clicking start logging, refreshing the log block can help,

see Adding New Logging Variables

Adding New Logging Variables
The crazyflie uses what are called “Log Blocks” to define what variables are logged and sent to
the ground station. A log block specifies what values to send and at what rate. Log blocks can
be paused and resumed after initial setup. Note the crazyflie communication has a limited
bandwidth, only enable around 10 logging variables at a time.

1. Navigate to the Log Blocks tab

2. The list on the left shows all available logging variables from the Crazyflie firmware
3. To view and modify what logging variables are sent, click the “Open Logging Block Setup

File”

b. The logging blocks have a defined format that must be followed
i. A block definition starts with START BLOCK
ii. The next line is the logging block integer id, it must be unique to other

logging blocks defined
iii. The next line is the name of the logging block, this can be any string

you’d like
iv. The next line is an integer defining the rate of the logging block, a higher

number pushes more data to the ground station. Note, too high of a rate
can overload the graphing visualization and cause the GUI to slow
down. Safe values are below 100.

v. The following lines define the variables that are in the logging block,
these are defined by the firmware and can be viewed in the large list
mentioned above. Any number of variables can be in the log block and
they do not have to be from the same logging group.

vi. A block definition ends with END BLOCK
vii. Any lines that are outside of a block definition are ignored

7. Save and close the logging block definition file
8. Click Refresh Log Blocks to send the new definition file to the crazyflie
9. The drop down on the right should now show your new logging block and will be active

a.
10. If needed, you can increase available bandwidth during logging by pausing all other log

blocks, selecting your new one from the drop down, and resuming it.
a. The stop all log blocks removes the log blocks from the Crazyflie. You will need

to pause each log block one by one

Gamepad Control
Control Crazyflie with gamepad

1. Be sure to pass the usb gamepad to the VM by clicking the USB symbol in the bottom
right of the window and selecting the gamepad

2. Navigate to the Gamepad tab
3. The provided gamepad should be configured already, if not you can click the configure

tab then move the joystick to the max and min value to calibrate it

4. Navigate to the control tab and select the gamepad control button after you have
plugged in your controller. The ground station will immediately start sending setpoints to
the crazyflie.

Command Line Interface (CLI)
The CLI is the base of the communication with the Crazyflie drone. It can optionally be used for
basic tasks. You shouldn’t need to interact with the CLI during the course of the lab, but it can
be useful for debugging if something goes wrong. It can be opened by adding a “nogui” flag to
the end of the crazyCART script. crazycart <radio channel> nogui

Run commands with ./Cli <command> <parameters>...

Further usage details can be found by appending --help to the end of a command. The
following commands are currently implemented.

Command Description

./Cli outputoverride <enable> <Time>
<Throttle> <Pitch> <Roll> <Yaw>

output override will send a setpoint that lasts
a set amount of time with the specified
throttle, roll pitch and yaw. With enable set to
1 it will send the setpoint as a rate and 2 will
send the setpoint as an angle

./Cli getparam <block_id|'block_name'>
<param_id|'param_name'>

Get param will get the value of specified
param.
Note only the param id is used for this
command. The param id is found in the
logging TOC, use getlogfile 1 command
to find this file

./Cli setparam <block_id|'block_name'>
<param_id|'param_name'> <value>

Set param will set the value of the specified
param

./Cli getlogfile <id> Get log file will get a certain log specified by
the id of
0: data log
1: param id
2: logging toc

./Cli logblockcommand <id> The log block command performs specific
tasks on log files for the specified id of
0: delete all log blocks
1: refresh all log blocks
2: load log blocks
3: delete log block
4: resumelog block
5: pause log block

Part 1: PID Tuning
In the first part of this lab you will be tuning PID values of the default controller through
experimentation. This will be done through the ground station GUI which will display information
from the test stand.

You will be provided a semi-working controller that you will need to flash onto the Crazyflie. This
file can be found in the Lab_Part_1 folder on the desktop. From there follow the directions in
the Flashing Crazyflie section. This controller works except that all PID constants have been set
to 0, you will view and set these constants from the ground station GUI. Important note: The
PID constants will be reset to 0 when the Crazyflie reboots! Be sure to copy down your
current values as you work to avoid data loss.

A note when tuning the roll and pitch axes, be sure to set the e_stop parameter under the sys
group to 0 during testing. By default the Crazyflie will kill motor power if it detects it is tumbling
(these tests trigger a false positive). The Crazyflie must be rebooted if this happens.

Getting Set Up for Part 1

Basic Setup
1. Setup the virtual machine environment

a. Import virtual machine
2. Open virtual box VM

a. Login username is bitcraze and password is crazyflie
3. Plug in the Crazyradio into the usb port
4. In the bottom right corner of the VM there is a USB icon, make sure the Bitcraze

Crazyradio is selected under this menu
a. This can be finicky, may have to physically reconnect the radio a couple of times

for it to connect successfully to the VM
5. Turn on drone by pressing the button located on the front of the drone
6. Get the radio channel for your drone from the provided spreadsheet

a. Crazyflie Status Sheet
7. Flash the drone with the pre-compiled firmware that has the no PID values set from the

Lab_Part_1 folder. See the Flashing the Crazyflie section for details
8. Place the drone on a level surface (not the test stand) and allow it to calibrate

a. See LED codes for more details
9. Connect to the crazyflie by running crazycart <radio channel>
10. Connect the GUI to the drone via the backend tab
11. To make sure you are connected to the drone send a low thrust setpoint with no roll,

pitch, or yaw setpoint, the motors should spin up
12. Once ready proceed to Part 1: PID Tuning

Flashing the Crazyflie
1. Navigate to the Crazyflie firmware folder, ex:

‘~/Desktop/Lab_Part_1/crazyflie_software/crazyflie-firmware-2021.06/’
2. Plug in the Crazyradio into the usb port

https://docs.google.com/spreadsheets/d/11Uj0RAcEvQVgLVexTUGZn8cMBuVpyKS2bjSG7E_AGww/edit?usp=sharing

3. In the bottom right corner of the VM there is a USB icon, make sure the Bitcraze
Crazyradio is selected under this menu

a. This can be finicky, may have to physically reconnect the radio a couple of times
for it to connect successfully to the VM

4. Create the file ‘crazyflie_software/crazyflie-firmware-2021.06/tools/make/config.mk’
if it doesn’t already exist and open with VS code

5. Add CLOAD_CMDS = -w radio://0/<radio_channel>/2M to the file and replace
<radio_channel> with your Crazyflie’s radio channel

a. Your radio channel can be found in this spreadsheet Crazyflie Status Sheet
b. This is a one time process and should not have to be done for any subsequent

flashes unless you change which drone you are using or what folder you are
flashing from

6. Make sure the Crazyflie is powered on and running
7. For Part 2 of the lab, compile the Crazyflie firmware with make

CONTROLLER="Student" from the root of the Crazyflie firmware
8. Then run make cload to begin flashing the compiled firmware to the Crazyflie specified

earlier.

Attitude Rate Control
We will begin by tuning the attitude rate controller. This controls the rate of rotation of the yaw
pitch and roll.
Tip: When tuning your rate controller, allow for a “looser” control. IE the percent overshoot and
settling time can be a bit larger than typically desired. This allows us to tune the attitude
controller “tighter” later. It is very difficult to get both controllers tight and is not recommended.

https://docs.google.com/spreadsheets/d/11Uj0RAcEvQVgLVexTUGZn8cMBuVpyKS2bjSG7E_AGww/edit?usp=sharing

https://highsierrapilots.club/tahoe-minden-reno-discovery-flight/roll-pitch-yaw-diagram/

1.1 Yaw Rate
First you will learn how to measure yaw rate with the test stand. Put the test stand so that it is
standing with the three legs on the ground with the attachment that will hold the drone parallel to
the ground, as figure 4 shows.

Figure 4. Yaw rate test stand setup

Now, connect to the Crazyflie and open the groundstation GUI. We will be graphing the test
stand rotation rate and the yaw attitude rate setpoint. Details on how to use the test stand
and how to setup plotting can be found above.

You can now send yaw rate setpoints and thrust setpoints via the ground station which will
tell the Crazyflie to rotate at a certain speed, the test stand sensor will then measure the actual
rate and display that on the GUI. However, with no PID constants set, the Crazyflie will not
respond to setpoints. Your task is to change these constants through the GUI by setting
parameters.

Relevant logging variables:
- MicroCART.Test_stand

- This is the test stand data
- ctrlStdnt.yawRate

- This is the yaw rate setpoint
- Optional

- ctrlStdnt.r_yaw
- This is the crazyflie’s on-board sensor for yaw rate measurements

Be sure to write down the PID values you find while tuning. They will be used in the second half
of the lab and are required for submission. Also, the PID values are reset when the Crazyflie
reboots, so be sure to write them down frequently!

Relevant parameters:
Group: s_pid_rate
- yaw_kp
- yaw_ki
- Yaw_kd

If the ground station becomes unresponsive or stops sending setpoints to the crazyflie, stop it
by pressing ctrl + c in the terminal you launched it and restart it. The PID constants are stored in
the crazyflie’s memory so they should be unchanged.

Your goal for this part of the lab is to demonstrate that you can send a yaw rate setpoint to the
Crazyflie and then verify through the GUI ground station that the Crazyflie follows that setpoint
closely.

1.2 Pitch Rate
Now change the mount attachment so that the Crazyflie will be held vertically and the left or
right side of the drone is facing the table, as shown in figure 5.

Figure 5. Pitch rate test stand setup

You will now be tuning pitch rate, this is how fast the Crazyflie tilts up or down. Repeat the
process you did for tuning the yaw rate, but with the appropriate pitch rate parameters and
logging values.

Remember to set the e_stop parameter under the sys group to 0

Relevant logging variables:
- MicroCART.Test_stand

- This is test stand data
- ctrlStdnt.pitchRate

- This is the pitch rate setpoint
- Optional

- ctrlStdnt.r_pitch
- This is the crazyflie’s on-board sensor for pitch rate measurements

Relevant parameters:
Group: s_pid_rate
- pitch_kp
- pitch_ki
- pitch_kd

1.3 Roll Rate
Change the orientation of the drone so that the front or back is facing the table.

You will now be tuning roll rate, which is how fast the Crazyflie tilts to the side. Repeat the
process you did for tuning the yaw rate and pitch rate, but with the appropriate roll rate
parameters and logging values.

Remember to set the e_stop parameter under the sys group to 0

Relevant logging variables:
- MicroCART.Test_stand

- This is test stand data
- ctrlStdnt.rollRate

- This is the roll rate setpoint
- Optional

- ctrlStdnt.r_roll
- This is the crazyflie’s on-board sensor for roll rate measurements

Relevant parameters:
Group: s_pid_rate
- roll_kp

- roll_ki
- roll_kd

Attitude Position Control
We will now tune how the Crazyflie holds a specific attitude angle. Recall from figure 3 that the
attitude PID controller provides the input to the attitude rate controller. Therefore, it is important
that the rate controller works well before continuing.

1.4 Yaw
Change the test stand setup to how you measured yaw rate. You will now be tuning yaw, which
is the angle that the Crazyflie is oriented. This is done similarly to yaw rate except you will be
sending degrees rather than degrees per second setpoints. Note, there is a button built into the
test stand for setting the 0 point of rotation, this can be used to approximately sync up the test
stand angle measurement with the Crazyflie’s built-in measurement.
In the end you will demonstrate that you can make the Crazyflie rotate to and hold a specific
yaw angle, confirming it through the GUI ground station.

Relevant logging variables:
- MicroCART.Test_stand

- This is test stand data
- ctrlStdnt.yaw

- This is the yaw setpoint
- Optional

- stateEstimate.yaw
- This is the crazyflie’s state estimator for yaw angle

Relevant parameters:
Group: s_pid_attitude
- yaw_kp
- yaw_ki
- yaw_kd

1.5 Pitch
For this part of the lab we will turn the test stand on its side and attach the other mount that will
hold the Crazyflie parallel to the floor. Ensure the left or right side of the drone is facing the test
stand, as shown in figure 6.

Figure 6. Pitch test stand setup

Repeat the process you did for tuning the yaw, but with the appropriate pitch parameters and
logging values. You will demonstrate that you can make the Crazyflie rotate to and hold a
specific pitch angle, confirming it through the GUI ground station.

Remember to set the e_stop parameter under the sys group to 0

Relevant logging variables:
- MicroCART.Test_stand

- This is test stand data
- ctrlStdnt.pitch

- This is the pitch setpoint
- Optional

- stateEstimate.pitch
- This is the crazyflie’s state estimator for pitch angle

Relevant parameters:
Group: s_pid_attitude
- pitch_kp

- pitch_ki
- pitch_kd

1.6 Roll
To measure the roll you will turn the drone 90 degrees such that the back or front of the drone
is facing the test stand, as figure 7 shows.

Figure 7. Roll test stand setup

Repeat the process you did for tuning the yaw and pitch, but with the appropriate roll
parameters and logging values. You will demonstrate that you can make the Crazyflie rotate to
and hold a specific roll angle, confirming it through the GUI ground station.

Remember to set the e_stop parameter under the sys group to 0

Relevant logging variables:
- MicroCART.Test_stand

- This is test stand data
- ctrlStdnt.roll

- This is the roll setpoint
- Optional

- stateEstimate.roll
- This is the crazyflie’s state estimator for roll angle

Relevant parameters:
Group: s_pid_attitude
- roll_kp
- roll_ki
- roll_kd

1.7 The Maiden Voyage
This final section of part 1 isn’t required but it may be a good idea (and fun) to check how your
PID values work in real flight!

At this point you should be able to fully control all axes of the drone through a gamepad. Before
you take off for real, it's always a good idea to check that your inputs do what you think they do
while on the test stand.

See Gamepad Control for details on setting up and using a gamepad with the ground station
GUI. Gamepad control uses a mixed setpoint setup where pitch and roll are given as
absolute angles, and yaw is given as a rate.

Once everything looks ok on the test stand, carefully try to take off and get a feel for how she
handles. Be aware of others in the lab! And try not to crash it too hard.

Part 2: Writing the Control Algorithm
For this part of the lab you will be writing your own control algorithms. Be sure to set up code
exporting from the VM so you don’t lose your work.

All locations where you will need to write new code have been commented with 488 TODO. You
can use VS code’s built-in search function to find all occurrences to make sure you haven’t
missed anything.

Control Layout
The high level student controller, defined in controller_student.c, manages setting up
setpoints and forwarding them to the attitude controller, whose output gets fed into the attitude
rate controller. Both the attitude and attitude rate controller are defined in
student_attitude_controller.c. The attitude and attitude rate controller utilize the base
pid algorithms defined in student_pid.c. The output from the attitude rate controller gets

passed back to the high level student controller where it then gets forwarded to other modules
outside the scope of this lab.

Understanding the Code
As a part of writing your own algorithms, it is important to understand the data structures used in
the firmware. Additionally, it can be useful to specify what logging information to send to the
ground station. Below are details on both subjects which will help in the development of your
algorithms. Additionally there are some further details on compiling the Crazyflie firmware below.

Logging Instructions
1. At the bottom of the controller_student.c and student_attitude_controller.c you will see a

list of log commands. It should look like this in structure but with many more LOG_ADD
commands and a couple of groups.

LOG_GROUP_START(pid_attitude)

/**

* @brief Proportional output roll

*/

LOG_ADD(LOG_FLOAT, roll_outP, <insert address here>)

LOG_GROUP_STOP(pid_attitude)

2. This is how information is communicated to the ground station such as current yaw,
pitch, roll and other information

3. In the <insert address here> spot you will put a pointer to the address of the global
variable you want to log (ex: you have named your output pitch variable outPitch, you
would put &outPitch in the field and it would look like the following)

LOG_ADD(LOG_FLOAT, roll_outP, &outPitch)

4. Now you know how to send information to the GUI ground station :)
5. The parameter macros below the logging are how the GUI sets constants in the

firmware, like you did with the PID constants in part 1.

Data Structures
There are four main structs that you will have to be familiar with that the state controller uses to
communicate with other modules, all of them are defined in the
/src/modules/interface/stabilizer_types.h file.
A small but important struct is the attitude struct, this contains roll, pitch, and yaw values as
floats as well as a timestamp. Depending on the control context (viewable in the
setpoint.mode struct) the values in this struct can represent degrees, or degrees per second
for each axis.

typedef struct attitude_s {

uint32_t timestamp; // Timestamp when the data was computed

float roll;

float pitch;

float yaw;

} attitude_t;

Figure 8. Attitude struct

The first main struct is the state struct: it contains the Crazyflie's current attitude as well as other
parameters that will not be of any use to you. Note that the current attitude rate is not available
in the state struct. For this value you will need to read directly from the gyroscope described in
the sensorData struct.

typedef struct state_s {

attitude_t attitude; // deg (legacy CF2 body

// coordinate system,

// where pitch is inverted)

quaternion_t attitudeQuaternion;

point_t position; // m

velocity_t velocity; // m/s

acc_t acc; // Gs (but acc.z without

// considering gravity)

} state_t;

Figure 9. State struct

The next major struct that you will interact with is the setpoint struct. This struct contains the
setpoint information provided by the commander module which received its information from the
ground station setpoints or a human input device. Like the other structs, it contains many fields
of information you do not have to worry about. You need only be concerned with the fields for
attitude, attitude rate, and thrust. The others like velocity and acceleration are not important
because you will only be implementing an attitude controller, not a position or velocity controller.

Additionally, the mode struct controls how the data in the setpoint struct is interpreted. This
information is set automatically based on the control method set by the ground station. For this
lab, we are concerned with only two or three control modes, attitude control, attitude rate
control, and mixed attitude control.

Attitude control
If:

● setpoint.mode.x y and z are set to modeDisable
● AND
● setpoint.mode. roll pitch and yaw are set to modeAbs

Then, the controller will use the values given by setpoint.attitude.

Attitude rate control
If:

● setpoint.mode.x y and z are set to modeDisable
● AND
● setpoint.mode. roll pitch and yaw are set to modeVelocity

The controller will use the values given by setpoint.attitudeRate. This mode ignores
most of the control algorithm and only uses the attitude rate controller to stabilize and control

the quad. This mode is useful if you want to hold a steady rotation speed of the quad body, this
is what some other quads call “acro mode”.

Mixed Attitude control
If

● setpoint.mode.x y and z are set to modeDisable
● AND
● setpoint.mode. roll and pitch are set to modeAbs and

setpoint.mode.yaw is set to modeVelocity

This allows the roll and pitch to be specified as a rate and the yaw to be an angle. This is the
method used when a gamepad controller is used.

typedef struct setpoint_s {

uint32_t timestamp;

attitude_t attitude; // deg

attitude_t attitudeRate; // deg/s

quaternion_t attitudeQuaternion;

float thrust; //0 - 60,000

point_t position; // m

velocity_t velocity; // m/s

acc_t acceleration; // m/s^2

bool velocity_body; // true if velocity

//is given in body frame;

// false if velocity is

// given in world frame

struct {

stab_mode_t x;

stab_mode_t y;

stab_mode_t z;

stab_mode_t roll;

stab_mode_t pitch;

stab_mode_t yaw;

stab_mode_t quat;

} mode;

} setpoint_t;

Figure 10. Setpoint struct

The next struct is the control struct. This is the output of your control algorithm and represents
the force to apply to the drone’s body. It is sent to the power distribution module which converts
it into motor commands. Note that these are 16 bit int values, so a conversion must take place
from a float.

typedef struct control_s {

int16_t roll;

int16_t pitch;

int16_t yaw;

float thrust;

} control_t;

Figure 11. Control struct

The last struct that you will interface with is the sensorData struct. This contains raw data from
several sensors, including the gyroscope. You will need to access information contained in this
struct for some of your rate PID calculations.

typedef struct sensorData_s {

Axis3f acc; // Gs

Axis3f gyro; // deg/s

Axis3f mag; // gauss

baro_t baro;

#ifdef LOG_SEC_IMU

Axis3f accSec; // Gs

Axis3f gyroSec; // deg/s

#endif

uint64_t interruptTimestamp;

} sensorData_t;

Figure 12. Sensor data struct

Compiling The Crazyflie Firmware
The crazyflie firmware can be compiled from the firmware root folder,
/Lab_Part_2/crazyflie_software/crazyflie-firmware-2021.06/ by running
make CONTROLLER=”Student”. After successful compilation, the binary files will be placed
in the root of the firmware folder and can then be flashed to the crazyflie by following the
instructions above.

make unit can also be used to run unit tests on the firmware, the unit tests are defined in
/Lab_Part_2/crazyflie_software/crazyflie-firmware-2021.06/test/. You
are free to add additional unit tests, however it is not required.

Writing the Code
Now that you understand the structure of the firmware, it's time to start writing your own
algorithms. You may want to review Flashing the Crazyflie, when you’re ready to compile run
make CONTROLLER="Student" from the root of the Crazyflie firmware.

Below is the suggested order of additions to make to the firmware.

2.1 General PID
Note, for this section you should use the PID constants you found in part 1 for known good
values. You can set the default values in the student_pid.h file. However the constants you
discovered earlier may have some assumptions built in so it may be necessary to re-tune the
controller if a significantly different algorithm is used.

The first thing that you will write is a general PID function and struct. The PID struct that we
provide you will be empty and you will decide on what should be included in it, that is defined in
student_pid.h. You are encouraged to make as many helper functions that you would like in
your student_pid.c file to help with roll, pitch and yaw calculations.

The first thing I would recommend writing is the PidObject struct in student_pid.h. This
struct is used to hold the data that is used for all other PID calculations so it is required to write
many of the other functions.

Next, write the basic getters and setters for the PidObject in student_pid.c.

Now we can actually write the PID algorithm in the studentPidUpdate function.

At this point, you should have filled out everything in student_pid.c and student_pid.h,
make sure all of the “488 TODO” comments have been fulfilled in these files.

2.2 Attitude Rate Controller
The attitude rate controller’s main functions are in student_attitude_controller.c, this
is where you should begin working.

2.3 Attitude Controller
The attitude controller’s main functions are also in student_attitude_controller.c.

At this point, you should have filled out everything in student_attitude_controller.c,
make sure all of the “488 TODO” comments have been fulfilled in these files.

2.4 Student Controller, Bringing it all together
Now we need to bring everything together in the controller_student.c file.

At this point, you should have filled out everything in all files, make sure all of the “488 TODO”
comments have been fulfilled.

Final Check
Before you go flying your Crazyflie for real, it's a good idea to verify everything works as
intended on the test stand. Attach the drone to the test stand and briefly check that all axes
respond how you expect. For this step you can use manual setpoints or a gamepad connected
to the ground station, see here for details on using a gamepad with the ground station.

If all looks good, take her for a spin and see how she handles! Be careful of others in the lab
and try not to crash it too hard!

What to submit
● Kp, Ki, and Kd constants for yaw rate, pitch rate, roll rate, yaw, pitch, and roll
● All documents that were edited in the firmware to complete part 2, see final export for

details

If you’re hungry for further challenges, take a look at the extra credit section of this lab.

Extra Credit
1. Give feedback on this lab

a. This is a new lab developed by the MicroCART team as a senior design project.
We would appreciate some feedback on what you enjoyed about the lab and
what can be improved.

b. Google Form Link
2. Test Stand Data Visualization

a. As in MP-1, extra credit may be awarded to teams that make a creative
visualization for the test stand position or rate data.

3. Manual flight obstacle course
a. If teams can demonstrate their stable control algorithm by manually flying through

an obstacle course extra points can be awarded. Film your obstacle runs and
submit.

4. Autonomous flight
a. The Crazyflie has many autonomous capabilities that we have not even touched

in this lab. Extra credit will be awarded if you can write a short script to takeoff, fly
forward, and land without using a controller.

https://forms.gle/mc5rrceGYU6uTi9q9

b. You could write a short script that uses the ground station CLI to send commands
over and over or you could use the crazyflie python library to send high level
commands to the Crazyflie.

i. An additional circuit board, the flow deck, is required to use the crazyflie
python library. If you wish to pursue this, talk to a TA and they can acquire
a flow deck from the MicroCART team (microcart-f2021@iastate.edu).

ii. Details on writing python scripts for the crazyflie can be found here

Document Version Changelog
- Version 1.1

- Changed optional logging variables in lab part one from gyro.x, y, z to
ctrlStdnt.r_roll, r_pitch, r_yaw

- Changed git instructions for vm to use “Lab_Part_* folder” instead of “Microcart
folder”

- Updated student controller sequence diagram to have desired attitude rate being
passed to the attitude rate controller

- Removed “Test Stand Control Board Rate mode” extra credit & replaced it with
test stand visualization extra credit

https://www.bitcraze.io/products/flow-deck-v2/
mailto:microcart-f2021@iastate.edu
https://www.bitcraze.io/documentation/repository/crazyflie-lib-python/master/user-guides/python_api/

